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Abstract 

The non linearity of inverter model constitutes one of the big problems in control of the three 

phase shunt active filter. In this paper we propose a linear model and state feedback control to 

overcome this complexity. To drive a linear model from the non linear model we introduced a 

power balanced equation. The currents injected by the three phase shunt active power filter and dc 

voltage are controlled in the synchronous orthogonal dq frame by applying a linear control based in 

the decoupled state-feedback controller. The accuracy of the linear proposed model and 

performances of the linear control are evaluated for unbalanced current compensation. The 

simulation results show the effectiveness of the proposed model and the control technique. 

Keywords 
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1 Introduction 

The intensive use of unbalanced equipments in industry constitutes an important and several 

source of power quality problems. These equipments, which are often nonlinear loads, generate 

harmonic currents, reactive power and single phase loads cause system unbalance. A power quality 

distortion is a source of low system efficiency and disturbance of other consumers. 
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The three phase shunt active power filter (SAPF) widely used to improve power quality on the load 

side (Rejil et al. (2013), Ravindra et al. (2011) and Chennai et al. (2014)). 

The effectiveness of any SAPF is associated to its configuration, the model established for the 

system (Mendalek et al. (2003) and Karzerni (2001)), the closed loop control strategy applied, the 

method implemented to obtain the references current (Abaali et al. (2007, 2008)), and the 

modulation technique used (Chennai et al. (2014)). The SAPF state of the art is well documented; 

hundreds of works are reviewed in Singh et al. (1999) and Brandao et al. (1999). The nonlinearity 

of the model of shunt active power filter, due to the inverter nonlinearity, is the major problem of 

control synthesis given in Kazerani et al. (2001) and Mendalek et al. (2003).  

In this paper we propose the decoupled state-feedback control method applied to the linear 

model to overcome the complexity of the non linearity model of three phase shunt active filter. A 

power balance equation and nonlinear input transformation are used to drive a linear model from 

nonlinear model. The current injected by the three phase shunt active power filter and dc voltage are 

controlled in the synchronous orthogonal dq frame by applying a linear control based in the 

decoupled state-feedback controller (Tnani et al. (2006)). The accuracy of the linear proposed 

model and performances of the linear control are evaluated for selective compensation of 

unbalanced current compensation using Matlab simulation. 

This paper is organized as following: after the introduction and short description of general 

structure, in the third section a mathematical recall of the nonlinear model of SAPF is developed. 

The fourth section gives the linear model of SAPF. The closed loop control of SAPF is decrypted in 

the fifth section. In the sixth section, the simulation results are presented. Finally, these results are 

discussed and commented in seventh section. 

 

2 Nonlinear model of three phase shunt active power filter 

The SAPF generate and inject the compensation current at the Point of Common Connection 

(PCC). The injected current is equivalent to the load current perturbations. Thus, the resulting total 

current drawn from the ac mains is sinusoidal. The main circuit is given in Fig. 1. 
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Fig. 1: General structure of the SAPF 

The following terminology will be used: 

[ ] [ ]Tcba vvvv = :Three phase voltage source 

[ ] [ ]Tcba iiii = :Output current inverter, 

[ ] [ ]TcMbMaMM vvvv = :Output voltage inverter 

dcv :Voltage in the dc side 

dci : Current in the dc side. 

 

2.1 Nonlinear model of SAPF in the stationary reference 

The Kirchhoff’s rules at the CCP of the SAPF allow one to write the following three equations 

corresponding to three phases three wire in the stationary “abc” frame (Mendalek et al. (2003): 
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By doing the sum of the three equations, taking into account the absence of the zero-sequence 

in the currents into a three wire system, and assuming that the ac supply voltages are balanced, we 

obtain the following relation: 
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The switching function kc of the kth leg of the converter equal to ‘1’ if Sk  is on (S’
k is off) and 

equal to ‘0’ if Sk  is off (S’
k is on). 

Hence, one can write: 

dckkM vcv   =           (3) 

From (2) and (3), the equations system (1) can be written as follows: 
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The switching state function can be defined by: 
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The current and voltage in the dc side are relegated to the output current of the inverter by: 

∑
=

==
c

ai
iidc

dc ic
C

i
Cdt

dv 11         (6) 

Since the zero sequence is assumed to be zero and we can verify the relationship 

∑∑
==

=
c

ai
ii

c
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ii icim we can write (6) in the reduced form given by: 

)(1 ''
bbaa

dc imim
Cdt
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+=  with baa mmm += 2'  et bab mmm 2' +=    (7) 

By combining (7) and (4), the reduced nonlinear model of SAPF can be formulated in the 

following matrix: 
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2.2  Nonlinear model of SAPF in the rotating frame dq 

To simplify the control of the system, we transform the model (8) in the reference frame dq. 

dq rotates at fundamental frequency, then the fundamental quantities become constant. The abc/dq 

transformation matrix is given by: 
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The reduced form of the transformation matrix (9) is given by: 
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The third equation of (8) can be written in matrix form as follows: 
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Applying the transformation (10) to (11) yields (12). '
dM  et '

qM are respectively the 

transformation of '
am  and '

bm  in the dq reference. 
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The application of the reduced form of the transformation matrix (10) to the first two 

equations of the model (8) yields the following equation: 
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Finally, the dynamic non linear model of SAPF expressed in the rotating frame is given by 

(14). The nonlinearity of this model is due to the coupling between the state variables { }dcqd vII    

and the input { }qd MM   (Mendalek et al. (2003)). 
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3 Linear model of SAPF 

An alternative equation, based on the power balance input-output of the inverter, can be used 

to describe the dynamics of the dc voltage dcv  expressed by the third equation of nonlinear model 
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(14). The active power at the ac side and dc side of the inverter can be described respectively by 

(15) and (16). 
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dt
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Then the power balance can be expressed by: 

pdcac PPP +=          (17) 

The power losses in the resistor R, due to the switching losses of the power components, is 

pP . The resistance R is very low these power losses are almost negligible compared to the power 

losses of the inverter which can be modelled by a resistance rp in parallel with the capacitor energy 

storage C. 

According to (17), the resulting equation of dynamics of dcv  is given by: 
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The equation (18) can be written as follows: 
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The quantity 2
dcv  is taken as state variable instead of dcv , (19) becomes linear. Especially since dcv  

is unipolar, the choice of 2
dcv  as a state variable will not cause any problems. In the nonlinear model, 

both input dM and qM  are coupled with the state variable dcv . So we change the input variables 

dM and qM  with the new input variables dMv  and qMv . Finally the linear model of SAPF form 

standard linear state space can be written as follows: 
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where 2
dcv , dI and qI  are the state variables, the input variables dU  and qU  are related to the input 

variables dMv  and qMv  by (21) with ( dv , qv ) are the grid voltage source in the rotating dq frame. 

The constants R, rp, L, C et ω are the system parameters. 
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4 State space presentation of SAPF model 

The linear model of SAPF has two inputs and three outputs and can be expressed in matrix 

form (22). The known matrix )33( xA , )23( xB  and )33( xC  are the state matrix, the control matrix 

and the observation matrix. The variables 3Rx∈ , 2Ru∈  and 3Ry∈  are respectively the vector 

state variable, the input vector and the output vector. 

⎩
⎨
⎧

=

+=

Cxy
BuAxx     !

          (22) 

 

4.1 State feedback control of SAPF 

The block diagram of the closed loop system controlled by state feedback (Tnani et al. (2006)) 

is given by Fig. 2: 

  

R B 

A 

K 

C ∫  y yref u x dx/dt 

 
Fig 2: Closed-loop system with a controller state feedback 

The control equation is given by : 

refRyKxu +−=           (23) 

with )32( xK , )32( xR  and refy  are respectively the gain of state feedback, a matrix used to obtain a 

unity gain steady and current reference vector. The transfer function of closed loop is given by: 

RsGsGc )()( 1=  with BBKAsICsG 1
1 )()( −+−=      (24) 

The state feedback gain matrix K is calculated by placing the poles of the closed loop transfer 

function G1(s) and R is the pseudo inverse of )0(1G . 
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4.2 Pole placement of closed loop transfer function 

The open loop system is third order; it has a real pole and two purely imaginary poles. The 

poles placement of the open loop system in the complex plane is shown in Fig. 3a. 

The polynomial characteristic of the closed loop system can be written as: 

))()(()det( 2
*
21 λλλ −−−=+− sssBKAsI       (25) 

1λ , 2
2 1 ζωζωλ −+−= nn j  and 2*

2 1 ζωζωλ −−−= nn j ) are respectively the real pole and the 

two conjugated complex poles with ζ  and nω  ars the damping and the angular frequency of the 

system. 

1 The real pole is placed far to the conjugated complex poles become dominant. 

2 The conjugated complex poles (little amortized amortization) are reduced to a specific 

damping ( 10/69,0 ωωζ ≈≈ n ). 

The Fig. 3.b shows the poles placement of the closed loop system in the complex plane. 
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Fig. 3 : Poles placement of the system in complex plan (a) : open loop, (b) : closed loop 

 

5 Simulation results 

The simulation parameters are : 

− Output passive filters (L, R)=(3 mH, 1Ω) 

− The capacitor in the dc side (C=500 µF), 
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− Inverter power looses are modelised by rp resistor equivalent to 5% of acP . 

−  Reference value of dc voltage vdcref=740V, 

− Three wires of the power network (220V, 50Hz). 

The linear model of SAPF is evaluated using a unbalance current compensation. The current 

loads and current reference are given by (26)  
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The Fig. 4, 5, 6, and 7 shows respectively the load current before compensation, the dc voltage 

vdc superposed with its reference vdcref, the injected current Id and Iq superposed with there references 

Idref  and Iqref. The Fig. 8 show the grid current after compensation practically balanced. The 

dynamics and response times of the system are acceptable. 
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Fig. 4 Load current before compensation 
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Fig. 5 : vdc and vdcref 



 

 66 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-2

0

2

4

6

8

10

12

t (s)

v dc
 a

nd
 v dc

re
f (V

)

 
Fig. 6 : Id and Idref 
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Fig. 7 : Iq and Iqref 
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Fig. 8 : Grid current after compensation 

 

6 Conclusion 

In this paper, we have developed a nonlinear model of three-phase shunt active power filter, 

which we deduced a linear model and close-loop control using the state feedback controller. 

According the simulation results, it is shown that the linear model and applying the state-feedback 

control technique, the dynamics of the system is considerably improved resulting in short response 

times. The proposed control method is limited to compensate the low frequency current 

perturbation. 
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